What is the solution to the equation #1/(sqrt8)=4(m+2)#?

1 Answer
Jun 2, 2018

#m=1/(8sqrt2)-2#

Explanation:

Solve:

#1/sqrt8=4(m+2)#

Prime factorize #8#.

#1/sqrt(2^2xx2)=4(m+2)#

Apply rule: #sqrt(a^2)=a#

#1/(2sqrt2)=4(m+2)#

Divide both sides by #4#.

#1/(2sqrt2)-:4=m+2#

Apply rule: #a/b-:c/d=a/bxxd/c#

#1/(2sqrt2)xx1/4=m+2#

Simplify #1/(4xx2sqrt2)# to #1/(8sqrt2)#.

#1/(8sqrt2)=m+2#

Subtract #2# from both sides.

#1/(8sqrt2)-2=m#

Switch sides.

#m=1/(8sqrt2)-2#