What is the standard form of y= (2x^2+5)(x-2) + (x-4)^2?
1 Answer
Dec 25, 2017
Explanation:
-
FOIL (First, Outer, Inner, Last) Distribute the binomials.
y=(2x^2+5)(x-2)+(x-4)^2
y=[(2x^2*x)+(2x^2*-2)+(5*x)+(5*-2)+(x-4)(x-4)]
y=(2x^3-4x^2+5x-10)+(x^2-8x+16) -
Note: A quick shortcut to FOILing squared binomials
(x-4)^2 is to square the first term,x -> x^2 , multiplying the first time by the last term and then doubling it,(x-4) -> x*-4*2=-8x , and then by squaring the last term,(-4)^2=+16
#(x-4)^2=x^2-8x+16) - Add like terms.
y=2x^3-4x^2+x^2+5x-8x-10+16
y=2x^2-3x^2-3x-6