What is the sum of n terms of the series #1^4/(1*3) +2^4/(3*5) +3^4/(5*7) +cdots+n^4/[(2n-1)(2n+1)# ?

1 Answer
Dec 4, 2017

See below.

Explanation:

We have

#n^4 = (4n^2-1) q(n)+r(n)#

with

#q(n) = c_1n^2+c_2n+c_2# and
#r(n) = an+b#

solving for #c_1,c_2,c_3,a,b# we get

#q(n) = 1/4(n^2+1/4)# and
#r(n) = 1/16#

and then

#n^4/(4n^2-1) = 1/4(n^2+1/4) + 1/16 1/((2n-1)(2n+1))# and then

#sum_(n=0)^m n^4/(4n^2-1) = m/16+1/4 sum_(n=0)^m n^2+1/32(sum_(n=0)^m 1/(2n-1)-sum_(n=0)^m 1/(2n+1))#

but

#sum_(n=0)^m 1/(2n-1)-sum_(n=0)^m 1/(2n+1) = 1-1/(2m+1)# then

#sum_(n=0)^m n^4/(4n^2-1) = m/16+1/4 sum_(n=0)^m n^2+1/32(1-1/(2m+1))#

We left the concluding results to the reader as an exercise.