What is the taylor series of #xe^x#?
1 Answer
Apr 26, 2017
# xe^x = x + x^2 + x^3/(2!)+x^4/(3!) + x^5/(4!) + ... #
# \ \ \ \ \ = sum_(n=0)^oo x^(n+1)/(n!) #
Explanation:
We can start with the well known Maclaurin series for
# e^x = 1 + x + x^2/(2!)+x^3/(3!) + x^4/(4!) + ... #
# \ \ \ = sum_(n=0)^oo x^n/(n!) #
So then multiplying by
# xe^x = x{1 + x + x^2/(2!)+x^3/(3!) + x^4/(4!) + ... } #
# \ \ \ \ \ = x + x^2 + x^3/(2!)+x^4/(3!) + x^5/(4!) + ... #
# \ \ \ \ \ = sum_(n=0)^oo x*x^n/(n!) #
# \ \ \ \ \ = sum_(n=0)^oo x^(n+1)/(n!) #