What is the transformation that maps y=cosX on to y=cos1/2 X?

1 Answer
Jul 7, 2016

Transformed y= #sqrt#((1+#given # y)/2).

Explanation:

Use #cos (x/2)=sqrt((1+cos x)/2)#.

Here for reading #cos x# as #cos (x/2)#, instead, #y to sqrt((1+y)/2)#.

For checking, use inverse mapping, after transformation

#y= cos (x/2)#. Inversely,

#x = 2 cos^(-1) y= 2 cos^(-1#(transformed y)

#=2cos^(-1)sqrt#((1+ given y)/2))

#=2cos^(-1)sqrt((1+cos x)/2)#

#=2cos^(-1)cos (x/2)=2(x/2)=x.#