What is the value of #int_-1^(+1) 1/x dx# ?

Justify your answer.

1 Answer
Jul 14, 2018

The integral diverges.

Explanation:

If you don't mind , I add an answer.

This is an improper integral as #1/x# is not defined for #x=0#

Therefore,

#int_-1^1(dx/x)=lim_(p->0^-)int_-1^p(dx)/x+lim_(q->0^+)int_q^1(dx)/x#

The first integral is

#lim_(p->0^-)int_-1^p(dx)/x=lim_(p->0^-)[ln|x|]_-1^p#

#=lim_(p->0^-)[ln-ln(1)]#

#=lim_(p->0^-)lnp-lim_(p->0^-)ln(-1)#

#=-oo-0#

#=-oo#

This integral diverges

The second integral is

#lim_(q->0^+)int_q^1(dx)/x=lim_(q->0^+)[ln|x|]_q^1#

#=lim_(q->0^+)[ln|1|-ln(q)]#

#=lim_(q->0^+)ln|1|-lim_(q->0^+)ln|q|#

#=0-(-oo)#

#=+oo#

This integral diverges