What is the value of k if, #y=1/a^(1-log_a(x))# , #z=1/a^(1-log_a(y))# then #x=a^k# ?
2 Answers
Oct 22, 2017
# k = 1+log_a(y) #
Explanation:
We have:
# y = 1/a^(1-log_a(x)) # ..... [A]
# z = 1/a^(1-log_a(y)) # ..... [B]
# x = a^k \ \ \ \ \ \ \ \ \ \ \ \ \ \ # ..... [C]
From Eq [C] we have:
# x = a^k => k = log_ax #
From Eq [A] we have:
# a^(1-log_a(x)) = 1/y #
# :. 1-log_a(x) = log_a(1/y) #
# :. 1-log_a(x) = -log_a(y) #
# :. log_a(x) = 1+log_a(y) #
Thus:
# k = 1+log_a(y) #
Oct 22, 2017
We have:
# y = 1/a^(1-log_a(x)) #
Inserting