What is the value of #k# in the equation #6x^2-11x-10=(3x+2)(2x-k)#?

2 Answers
Oct 27, 2016

#k=5#

Explanation:

Expand the factors on the right side, using for example, the FOIL method.

#(3x+2)(2x-k)=6x^2-3kx+4x-2k#

#=6x^2+x(-3k+4)-2k#

Compare this to the left side. For the 2 sides to be equal, then

#-2k=-10rArrk=5#

Oct 27, 2016

#k=5#

Explanation:

The value of #color(violet)k# is determined by expanding the factors and then comparing the coefficients of the similar monomials(i.e monomials having same unknowns)

The expansion is determined by applying the distributive property
#color(red)((a+b)(c+d)=ac+ad+bc+bd)#

#6x^2-11x-10=(3x+2)(2x-k)#
#rArr6x^2-11x-10=(3x*2x+3x*(-k)+2*2x+2*(-k))#
#rArr6x^2-11x-10=6x^2-3xk+4x-2k#
#rArr6color(blue)(x^2)-11color(orange)x-10=6color(blue)(x^2)+(-3k+4)color(orange)x-2k#

Then,
#-3k+4=-11# EQ1
#-2k=-10rArrcolor(violet)(k=(-10)/(-2)=5)#

Checking the value of #color(violet)k# is determined by substituting its value in EQ1

#-3k+4=?-11#
#-3(5)+4=?-11#
#-15+4=?-11# TRUE

Therefore, #color(violet)(k=5)#