What is the value of #lim_(x->0)[(1+x)^(1/x)-e+1/2ex]/x^2# ?

1 Answer
Mar 31, 2018

#lim_(xrarr0)((1+x)^(1/x)-e+1/2ex)/x^2=oo#

Explanation:

First note that

#lim_(xrarr0)(1+x)^(1/x)=e#

This is actually how #e# was "invented". Here's a quick proof.

Let #L=lim_(xrarr0)(1+x)^(1/x)#.

Now take the natural log of both sides.

#lnL=ln[lim_(xrarr0)(1+x)^(1/x)]=lim_(xrarr0)ln(1+x)^(1/x)=lim_(xrarr0)ln(1+x)/x#

Now we use L'Hopital's Rule

#lnL=lim_(xrarr0)(1/(1+x))/1=1#

Therefore #L=lim_(xrarr0)(1+x)^(1/x)=e#.

So

#lim_(xrarr0)((1+x)^(1/x)-e+1/2ex)/x^2=lim_(xrarr0)(e-e+1/2ex)/x^2#

#=lim_(xrarr0)(e)/(2x)=oo#