What is the value of #p# such that #3x^p(4x^(2p+3) + 2x^(3p-2)) = 12x^12 + 6x^10#?

1 Answer
Sep 19, 2017

# p =3 #

Explanation:

We have:

# 3x^p(4x^(2p+3) + 2x^(3p-2)) = 12x^12 + 6x^10 #

# :. 3x^p xx 4x^(2p+3) + 3x^p xx 2x^(3p-2) = 12x^12 + 6x^10 #

# :. 12 x^(p+(2p+3)) + 6 x^(p+(3p-2)) = 12x^12 + 6x^10 #

# :. 12 x^(3p+3) + 6 x^(4p-2) = 12x^12 + 6x^10 #

Compare coefficients of #x^12# and #x^10# then:

# x^12: 3p+3 = 12 => p=3 #
# x^10: 4p-2 = 10 => p=3 #

And so with #p=3# both indices on the LHS are simultaneously identical to the RHS.