How do you find the limit #lim_(h->0)((3+h)^(-1)-3^-1)/h# ?

1 Answer
Sep 6, 2014

#lim_{h to 0}{(3+h)^{-1}-3^{-1}}/h =-1/9#

Let us simplify the quotent first.
#{(3+h)^{-1}-3^{-1}}/h#
by rewriting the -1 power as a reciprocal,
#={1/{3+h}-1/3}/h#
by taking the common denominator of the numerator,
#={{3-(3+h)}/{3(3+h)}}/h#
by cancelling out the 3's,
#={{-h}/{3(3+h)}}/h#
by cancelling out the #h#'s,
#={-1}/{3(3+h)}#

Now, let us take the limit.
#lim_{h to 0}{-1}/{3(3+h)} ={-1}/{3(3+0)} =-1/9#