What is the value of #x# given that #(x+3)/(x+7)>3#?

1 Answer
Jun 26, 2018

The solution is #x in (-9,-7)#

Explanation:

You cannot do crossing over

The inequality is

#(x+3)/(x+7)>3#

#=>#, #(x+3)/(x+7)-3>0#

#=>#, #(x+3-3(x+7))/(x+7)#

#=>#, #(x+3-3x-21)/(x+7)>0#

#=>#, #(-2x-18)/(x+7)>0#

#=>#, #(2(x+9))/(x+7)<0#

Let #f(x)=(2(x+9))/(x+7)#

Let's build a sign chart

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-9##color(white)(aaaa)##-7##color(white)(aaaa)##+oo#

#color(white)(aaaa)##x+9##color(white)(aaaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##+#

#color(white)(aaaa)##x+7##color(white)(aaaaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##+#

#color(white)(aaaa)##f(x)##color(white)(aaaaaaa)##+##color(white)(aaaa)##-##color(white)(aaaa)##+#

Therefore,

#f(x)<0# when #x in (-9,-7)#

graph{(x+3)/(x+7)-3 [-26.83, 9.2, -8.96, 9.06]}