What is the vertex, axis of symmetry, maximum or minimum value, and the range of the parabola #f(x) = 3x^2 - 4x -2#?

1 Answer
Aug 1, 2016

Minimum
#x_("intercepts") ~~ 1.721 and 0.387# to 3 decimal places
#y_("intercept")=-2#

Axis of symmetry #x=2/3#

Vertex #->(x,y)=(2/3,-10/3)#

Explanation:

The term #3x^2# is positive so the graph is of shape type #uu# thus a #color(blue)("minimum")#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Write as #3(x^2-4/3x)-2#

#color(blue)("So the axis of symmetry is "x=(-1/2)xx-4/3 = +2/3)#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Thus #x_("vertex")=2/3#

By substitution #y_("vertex")=3(2/3)^2-4(2/3)-2 = -3.33bar(3)=-10/3#

#color(blue)("Vertex "->(x,y)=(2/3,-10/3)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Read directly from #f(x)=3x^2-4x-2#

#color(blue)(y_("intercept")=-2)#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To find the roots by completing the square we have

#y=3(x-4/(3xx2))^2+k-2#
#=> 3(-4/6)^2+k=0 => k=-16/12 = -4/3# giving

#y=3(x-2/3)^2-4/3-2#

#y=3(x-2/3)^2-10/3 #
This confirms the vertex as #+2/3 and -10/3#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Set #y=0#

#3(x-2/3)^2=10/3#

#x-2/3=+-sqrt(10/9)#

#x=2/3+-sqrt(10)/3#

#x~~ 1.721 and 0.387# to 3 decimal places