What is the vertex, axis of symmetry, of #y=4-8x^2+3x#? Does the parabola open up or down?
1 Answer
Jul 5, 2017
Explanation:
#"for a parabola in standard form " y=ax^2+bx+c#
#• " if " a>0" then parabola opens up " uuu#
#• " if " a<0" then parabola opens down " nnn#
#y=-8x^2+3x+4" is in standard form"#
#"with " a=-8,b=3,c=4#
#"since " a<0" parabola opens down"#
#"the x-coordinate of the vertex " x_(color(red)"vertex")=-b/(2a)#
#rArrx_(color(red)"vertex")=-3/(-16)=3/16#
#"substitute into equation for y-coordinate of vertex"#
#y_(color(red)"vertex")=-8(3/16)^2+3(3/16)+4=137/32#
#rArrcolor(magenta)"vertex " =(3/16,137/32)#
#"the axis of symmetry passes through the vertex, is a vertical"#
#"line with equation"#
#x=3/16#
graph{(y+8x^2-3x-4)(y-1000x+375/2)=0 [-10, 10, -5, 5]}