What is the vertex of #f(x) = x^2-6x+13#?

1 Answer
Jul 28, 2016

Vertex#->(x,y)=(3,4)#

Explanation:

#color(blue)("A sort of cheat method")#

Set as #y=x^2-6x+13#

as the coefficient of #x^2# is 1 we have:

#color(blue)(x_("vertex")=(-1/2)xx(-6) = +3#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
By substituting #x=3# we have

#color(blue)(y_("vertex")=(3)^2-6(3)+13 = 4)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The true format is

Given that #y=ax^2+bx+c#

Write as #y=a(x^2+b/a x)+c#

#x_("vertex")=(-1/2)xxb/a#

In your question #a=1#