What is the volume of the solid produced by revolving #f(x)=cscx-cotx, x in [pi/8,pi/3] #around the x-axis?

1 Answer
Aug 4, 2016

A pretty ugly answer, but I got:

#V = ((48 - 16sqrt3 + 5pi)sqrt2 + 32sqrt3 - 10pi - 96sqrt(2 - sqrt2))/(24(2-sqrt2))pi#

#~~ 0.3216#

and Wolfram Alpha agrees!

Unfortunately, it's the simplest exact numerical solution, apparently, we can't make it look any nicer. :)


DISCLAIMER: The integral is not that hard, but this answer requires a lot of simplification work!

First, let's see how this graph looks.

graph{(cscx - cotx) [0.3927, 1.047, 0, 0.8]}

Here we can see it's a simple curve within this interval. Along the x-axis, the easiest way to do this is to form discs that are perpendicular to the x-axis.

The integral in general is:

#\mathbf(V = int_(pi/8)^(pi/3) pir(x)^2dx)#

where #r(x) = cscx - cotx# is the function by which the radius varies for each disc we stack of width #dx# and area #pir(x)^2# along the x-axis.

#= pi int_(pi/8)^(pi/3) (cscx - cotx)^2dx#

#= pi int_(pi/8)^(pi/3) csc^2x - 2cscxcotx + cot^2xdx#

#= pi[ int_(pi/8)^(pi/3) csc^2xdx - 2 int_(pi/8)^(pi/3) cscxcotxdx + int_(pi/8)^(pi/3) cot^2xdx]#

If you recall...

  • #color(green)(d/(dx)[cscx] = -cscxcotx)#, similar to how #d/(dx)[secx] = secxtanx#. So let's adjust the middle integral to make it easier to integrate.
  • #d/(dx)[tanx] = sec^2x#, so #color(green)(d/(dx)[cotx] = -csc^2x)#. So let's also adjust the first integral.
  • Since #1 + tan^2x = sec^2x#, #color(green)(1 + cot^2x = csc^2x)#, and so, let's adjust the third integral as well.

#= pi[-int_(pi/8)^(pi/3) -csc^2xdx + 2 int_(pi/8)^(pi/3) -cscxcotxdx - int_(pi/8)^(pi/3) 1 + (-csc^2x)dx]#

Now we're ready to evaluate each one.

#= pi[-cotx + 2cscx - x - cotx]#

#= pi|[2cscx - 2cotx - x]|_(pi"/"8)^(pi"/"3)#

#= pi[(2csc(pi/3) - 2cot(pi/3) - pi/3) - (2csc(pi/8) - 2cot(pi/8) - pi/8)]#

At this point, either use your calculator, or work out the second half using half-angle formulas (since #pi/8 = 22.5^@#). I just used Wolfram Alpha to save time on #csc(pi/8)# and #cot(pi/8)#.

#= pi[(2*2/sqrt3 - 2sqrt3/3 - pi/3) - (2*2/(sqrt(2 - sqrt2)) - 2(1 + sqrt2) - pi/8)]#

Use common denominators to merge some fractions, distributing negative signs over parentheses carefully.

#= pi[((4sqrt3)/3 - (2sqrt3)/3 - pi/3) - (4/(sqrt(2 - sqrt2)) - 2 - 2sqrt2 - pi/8)]#

#= pi[(2sqrt3)/3 - pi/3 - 4/(sqrt(2 - sqrt2)) + 2 + 2sqrt2 + pi/8]#

#= pi[(16sqrt3)/24 - (8pi)/24 + 48/24 + (48sqrt2)/24 + (3pi)/24 - 4/(sqrt(2 - sqrt2))]#

Here we multiply by a unit fraction to get rid of the outer radical in the denominator.

#= pi[(16sqrt3 - 5pi + 48 + 48sqrt2)/24 - 4/(sqrt(2 - sqrt2))*(sqrt(2 - sqrt2))/(sqrt(2 - sqrt2))]#

Cross-multiply to merge fractions again.

#= pi[((16sqrt3 - 5pi + 48 + 48sqrt2)(2-sqrt2))/(24(2-sqrt2)) - (96sqrt(2 - sqrt2))/(24(2 - sqrt2))]#

#= pi[((16sqrt3 - 5pi + 48 + 48sqrt2)(2-sqrt2) - 96sqrt(2 - sqrt2))/(24(2-sqrt2))]#

Expand, and then cancel out anything you can.

#= pi[(32sqrt3 - 10pi cancel(+ 96) + 96sqrt2 - 16sqrt6 + 5pisqrt2 - 48sqrt2 cancel(- 96) - 96sqrt(2 - sqrt2))/(24(2-sqrt2))]#

#= pi[(48sqrt2 - 16sqrt6 + 5pisqrt2 + 32sqrt3 - 10pi - 96sqrt(2 - sqrt2))/(24(2-sqrt2))]#

Lastly, I found terms that I could factor #sqrt2# out of. Since #sqrt6 = sqrt3sqrt2#, make sure you don't accidentally write #16# instead of #16sqrt3#!

#= color(blue)(((48 - 16sqrt3 + 5pi)sqrt2 + 32sqrt3 - 10pi - 96sqrt(2 - sqrt2))/(24(2-sqrt2))pi)#

#~~ 0.1024pi#

#~~ color(blue)(0.3216)#