What is the volume of the solid produced by revolving #f(x)=e^x-xlnx, x in [1,5] #around the x-axis?
1 Answer
The volume is
#V = pi/2(e^(10) - e^2) - 1696.084pi + (125pi)/3[ln^2(5) - 2/3ln5 + 2/9] - (2pi)/27# #"u"^3#
To do these kinds of solid of revolution problems around the
The volume is then given by:
#V = pi int_(a)^(b) f^2(x)dx#
The
In this case, we have:
#V = pi int_(1)^(5) (e^x - xlnx)^2dx#
#= pi int_(1)^(5) e^(2x) - 2xe^xlnx + x^2ln^2xdx#
#= pi overbrace(int_(1)^(5) e^(2x)dx)^("Integral 1") - 2pi overbrace(int_(1)^(5) xe^xlnxdx)^"Integral 2" + pi overbrace(int_(1)^(5) x^2ln^2xdx)^"Integral 3"#
- The first integral is
#1/2e^(2x)# evaluated from#x = 1# to#5# , which is#1/2(e^(10) - e^2)# . - The second integral is not possible with elementary functions, and the numerical solution is
#848.042# . - The third integral is hard but doable here.
#int x^2ln^2xdx = ?#
Let:
#u = ln^2x# #dv = x^2dx# #du = (2lnx)/xdx# #v = x^3/3#
Thus,
#int x^2ln^2xdx#
#= (x^3ln^2x)/3 - int x^3/3 (2lnx)/xdx#
#= 1/3 x^3ln^2x - 2/3int x^2 lnxdx#
Repeat with:
#u = lnx# #dv = x^2dx# #du = 1/xdx# #v = x^3/3#
And we get:
#=> 1/3 x^3ln^2x - 2/3[1/3x^3lnx - int x^3/3 1/xdx]#
#= 1/3 x^3ln^2x - 2/3[1/3x^3lnx - 1/3 int x^2dx]#
#= 1/3 x^3ln^2x - [2/9x^3lnx - 2/9 int x^2dx]#
#= 1/3 x^3ln^2x - 2/9x^3lnx + 2/9 int x^2dx#
#= {:[1/3 x^3ln^2x - 2/9x^3lnx + 2/9 x^3/3]|:}_(1)^(5)#
#= [1/3 (5)^3ln^2(5) - 2/9(5)^3ln(5) + 2/9(5)^3/3] - [cancel(1/3 (1)^3ln^2(1))^(0) - cancel(2/9(1)^3ln(1))^(0) + 2/9 (1)^3/3]#
#= [1/3 125ln^2(5) - 2/9(125ln5 - 125/3)] - 2/9(1/3)#
#= 125/3[ln^2(5) - 2/3ln5 + 2/9] - 2/27#
So, adding up all the results,
#V = pi { 1/2(e^(10) - e^2)} - 2pi {848.042} + pi {125/3[ln^2(5) - 2/3ln5 + 2/9] - 2/27}#
#= color(blue)(pi/2(e^(10) - e^2) - 1696.084pi + (125pi)/3[ln^2(5) - 2/3ln5 + 2/9] - (2pi)/27)#
or