What's the derivative of #arctan(e^x)#?
1 Answer
Explanation:
Let
Differentiate Implicitly wrt
# sec^2 y dy/dx = e^x # ... [1]
Using the
# sec^2y = 1 + tan^2y #
# :. sec^2y = 1 + (e^x)^2 #
# :. sec^2y = 1 + e^(2x) #
Substituting this result into [1] we get:
# (1 + e^(2x))dy/dx=e^x #
Hence,
# dy/dx=e^x/(1 + e^(2x)) #