What's the Limit of #(1/x)^(1/x)# as #x# approaches infinity ?

1 Answer
Apr 2, 2018

#lim_(x->oo) (1/x)^(1/x) = 1#

Explanation:

Let #L = lim_(x->oo) (1/x)^(1/x)#.

Take the natural logarithm on both sides.

#ln L = lim_(x->oo) 1/x ln(1/x) = lim_(x->oo) 1/x ln(x^-1) =lim_(x->oo)-lnx/x #

Since #lim_(x->oo) lnx/x -> oo/oo#, we can use #color(red)("L'Hôpital's rule")#.

#ln L = - lim_(x->oo) lnx/x = -lim_(x->oo) (d/dx lnx)/(d/dxx)#

#ln L = -lim_(x->oo) (1/x)/1 =-lim_(x->oo) 1/x = -0 = 0#.

Raise #e# to both sides in order to cancel the natural logarithm:

#e^(ln L) = e^0#

#color(red)(L = 1)#

Therefore,

#lim_(x->oo) (1/x)^(1/x) = 1#.