What will be the solution of the mentioned problem????

If#y=cos3x#
then, #y_n=?#

1 Answer
Feb 5, 2018

# y_n = (d^n)/(dx^n) cos3x = { ((-1)^(n/2 ) \ 3^n \ sin 3x,n " even"), ((-1)^((n+1)/(2)) \ 3^n \ cos 3x,n " odd") :} #

Explanation:

We have:

# y = cos3x #

Using the notation #y_n# to denote the #n^(th)# derivative of #y# wrt #x#.

Differentiating once wrt #x# (using the chain rule), we get the first derivative:

# y_1 = (-sin3x)(3) = -3sin3x #

Differentiating further times we get:

# y_2 = (-3)(cos3x)(3) \ \ \ \ \ \ = -3^2cos3x #
# y_3 = (-3^2)(-sin3x)(3) = +3^3sin3x#
# y_4 = (3^3)(cos3x)(3) \ \ \ \ \ \ \ \ \ \= +3^4cos3x#
# y_5 = (3^4)(-sin3x)(3) \ \ \ \ \ \= -3^5sin3x#
# vdots #

And a clear pattern is now forming, and the #n^(th)# derivative is:

# y_n = (d^n)/(dx^n) cos3x = { ((-1)^(n/2 ) \ 3^n \ sin 3x,n " even"), ((-1)^((n+1)/(2)) \ 3^n \ cos 3x,n " odd") :} #