Which is the correct answer #sinx < -1/2# ?

#sinx < -1/2#
1. Use formulas
#pi-arcsin(-1/2)+2pik#
#2pi+arcsin(-1/2)+2pik#
So
#(7pi)/6+2pik#
#(11pi)/6+2pik#
2. Use unit circle
And we get
#-(5pi)/6#
#-pi/6#
Is the same?

1 Answer
Aug 1, 2018

#x in (( 2 k - 1 )pi + 1/6 pi ), 2 k pi - 1/6 pi ), k = 0, +- 1, +- 2, +-3, ...# . I will give more details, later.

Explanation:

In #[ - pi, pi ], #

#sin x < -1 /2#, when #x in ( - 5/6 pi, - 1/6 pi ) in Q_3 and Q_4 #

For #x in ( - oo, oo )#,

#sin x < -1 /2#, when

#x in (( 2 k - 1 )pi + 1/6 pi ), 2 k pi - 1/6 pi ), k = 0, +- 1, +- 2, +-3, ...#

#= ...U ( - 17/6 pi, -13/6 pi ) U ( -5/6 pi, - 1/6 pi )#

#U ( 7/6 pi, 11/6 pi ) U...#

See graph for #y < 0 in Q_3 and Q_4#.
graph{y-(sin x + 1/2)=0 [-10 10, -1 0]}