Why can't you integrate #sqrt(1+(cosx/-sinx)^2#?

1 Answer
Jan 29, 2015

The answer is: #ln|tan(x/2)|+c#

First of all it's useful to "change" a little the function:

#y=sqrt(1+(cosx/-sinx)^2)=sqrt(1+(cos^2x)/(sin^2x))=sqrt((sin^2x+cos^2x)/(sin^2x))=sqrt(1/(sin^2x))=1/sinx#.

I used the first fondamental relation of trigonometry: #sin^2x+cos^2x=1#

So we have to integrate: #int1/sinxdx#.

Before integrate this function, it is useful to remember the parametric formula of sinus, that says:

#sinx=(2t)/(1+t^2)#, where #t=tan(x/2)#.

Now the integral will be done with the method of substitution:

#tan(x/2)=trArrx/2=arctantrArrx=2arctantrArrdx=2(1/(1+t^2))dt#.

Our integral becoms:

#int1/sinxdx=int1/((2t)/(1+t^2))2(1/(1+t^2))dt=int(1+t^2)/(2t)2(1/(1+t^2))dt=int1/tdt=ln|t|+c=ln|tan(x/2)|+c#