First you should be aware that:
#sinA+sinB-=2sin((A+B)/2)cos((A-B)/2)#
So using the above result,
#sinx+sin3x=2sin((x+3x)/2)cos((x-3x)/2)#
#=2sin(2x)cos(-x)=color(blue)(2sin(2x)cos(x))#
Hence,
#sinx+sin3x-cosx=0#
Becomes,
#2sin(2x)cos(x)-cos(x)=0#
Factor out #cos(x)#
#=>cos(x)[2sin(2x)-1]=0#
Case 1 :
#cos(x)=0#
Thus , #x=+-pi/2+2npi" "# , #ninZZ#
Now we substitute all the values of #n# that will give us answers in in the interval #[0,2pi]#
#n=0" " =>x=color(orange)(pi/2)#
#n=1" " =>x=-pi/2+2pi=color(orange)((3pi)/2)#
Case 2:
#2sin(2x)-1=0#
#=>sin(2x)=1/2#
#=>2x=pi/6(-1)^n+npi" "# , #ninZZ#
#=>x=pi/12(-1)^n+npi/2#
Again, now we substitute all the values of #n# that give us the range we want,
#n=0" " =>x=color(orange)(pi/12)#
#n=1" " =>x=-pi/12+pi/2=color(orange)((5pi)/12)#