#4^x(x+4)+x^2-14x-72=4^x(x+4)+(x+4)(x-18)=0#
This is equivalent to
#{(4^x+x-18=0),(x+4=0):}#
Now #4^x+x-18=0# can be solved using the Lambert function #W(cdot)#
https://en.wikipedia.org/wiki/Lambert_W_function
because calling #e^lambda = 4# we have
#e^(lambda x)+x-18=0# now making #y = x-18# we have
#e^(lambda (y+18))+y=0# or
#e^(18lambda)e^(lambda y)+y=0# or
#e^(18lambda)=-y e^(-lambda y)# or
#lambda e^(18lambda)=(-lambda y)e^(-lambda y)#
Now using the property
#Xe^X = Y hArr X = W(Y)#
we have
#-lambda y = W(lambda e^(18lambda))# or
#y = -1/lambda W(lambda e^(18lambda)) = x-18# and then
#x = 18-1/lambda W(lambda e^(18lambda)) =2#
Here #lambda = log_e 4#
and finally the solution set is
#x = {-4,2}#