#x^3+24x-16# [0,4] verify mean value theorem?
1 Answer
May 2, 2018
We seek to verify the Mean Value Theorem for the function
# f(x) = x^3+24x-16# on the interval#[0,4]#
The Mean Value Theorem, tells us that if
# f'(c) = (f(b)-f(a))/(b-a) #
So, Differentiating wrt
# f'(x) = 3x^2 + 24 #
And we seek a value
# :. 3c^2 + 24 = ((64+96-16)-(0+0-16))/(4-0) #
# :. 3c^2 + 24 = 160/4 #
# :. 3c^2 + 24 = 40 #
# :. 3c^2 = 16 #
# :. c^2 = 16/3 #
# :. c = +- (4sqrt(3))/3 #
And we require that