How do I find the integral #intcos(x)ln(sin(x))dx# ?

1 Answer
Jul 30, 2014

#=ln(sin(x))(sin(x)-1)+c#, where #c# is a constant

Explanation

#=intcos(x)ln(sin(x))dx#

let's #sin(x)=t#, #=># #cos(x)dx=dt#

#=intln(t)*1dt#

Using Integration by Parts,

#int(I)(II)dx=(I)int(II)dx-int((I)'int(II)dx)dx#

where #(I)# and #(II)# are functions of #x#, and #(I)# represents which will be differentiated and #(II)# will be integrated subsequently in the above formula

Similarly following for the problem,

#=ln(t)int1*dt-int((lnt)'intdt)dt#

#=tln(t)-int1/t*tdt#

#=tln(t)-t+c#, where #c# is a constant

#=t(ln(t)-1)+c#, where #c# is a constant

#=sin(x)(lnsin(x)-1)+c#, where #c# is a constant