How do you find the derivative of #y=x^cos(x)#?

1 Answer
Jul 30, 2014

#y'=x^cos(x)*((cos(x))/x-sin(x)ln(x))#

Solution :

#y=f(x)^g(x)#, this type of questions usually solve by following two methods,

Explanation (I)

taking #ln# of both sides, we get,

#ln(y)=g(x)*ln(f(x))#

Now differentiating both sides with respect to #x# using Product Rule

#1/y*y'=g(x)*(f'(x))/f(x)+ln(f(x))*g'(x)#,

#y'=y(g(x)*(f'(x))/f(x)+ln(f(x))*g'(x))#,

#y'=f(x)^g(x)(g(x)*(f'(x))/f(x)+ln(f(x))*g'(x))#,

Similarly following for #y=x^cos(x)#, we get

#lny=cos(x)*ln(x)#

#(y')/y=(cos(x))/x+ln(x)(-sin(x))#

#y'=y*((cos(x))/x-sin(x)ln(x))#

#y'=x^cos(x)*((cos(x))/x-sin(x)ln(x))#

Explanation (II)

#y=f(x)^g(x)#

first do the differentiation keeping #g(x)# as constant and f(x) as it is (i.e. #x^n#), then #f(x)# as constant and g(x) as it is (i.e. #a^x#), this is quick way to do these type of questions,

like,

#y'=g(x)(f(x))^(g(x)-1)*f'(x)+f(x)^g(x)*ln(f(x))*g'(x)#

following in the same way,

#y'=cos(x)(x^(cos(x)-1))+x^cos(x)(lnx)(-sin(x))#

#y'=x^cos(x)(cos(x)(x^-1)+(lnx)(-sin(x)))#

#y'=x^cos(x)(cos(x)/x-sin(x)lnx)#