How do you find Find the Riemann sum that approximates the integral #int_0^9sqrt(1+x^2)dx# using left endpoints with #n=6#? Calculus Methods of Approximating Integrals RAM (Rectangle Approximation Method/Riemann Sum) 1 Answer Wataru Sep 21, 2014 Let #f(x)=sqrt{1+x^2}#. #Delta x={b-a}/n={9-0}/6=1.5# #L_6=[f(x_0)+f(x_1)+cdots+f(x_5)]cdot Delta x# #=[f(0)+f(1.5)+f(3)+f(4.5)+f(6)+f(7.5)]cdot(1.5)# #approx 34.84# Answer link Related questions What is Integration using rectangles? Find the riemann sum for #f(x)=x+x^2#? How do you Find the Riemann sum for #f(x)=x^3# on the interval #[0,5]# using right endpoints with #n=8#? How do you Use a Riemann sum to approximate the area under the graph of the function #y=f(x)# on... How do you use a Riemann sum to calculate a definite integral? How do you Use a Riemann sum to find area? How do you Use a Riemann sum to find volume? What is a left Riemann sum? What is lower Riemann sum? What is midpoint Riemann sum? See all questions in RAM (Rectangle Approximation Method/Riemann Sum) Impact of this question 6761 views around the world You can reuse this answer Creative Commons License