Question #6027a

1 Answer
Nov 16, 2014

#f(x)={x^2}/{x^2+3}#

By Quotient Rule,

#f'(x)={2x cdot(x^2+3)-x^2 cdot 2x}/{(x^2+3)^2}={6x}/{(x^2+3)^2}=0#

#=>x=0# (the only critical number)

By checking the sample values #x=pm1#,

#{(f'(-1)>0),(f'(1)<0):}=>{(f'(x) < 0 " on "(-infty,0)),(f'(x)>0" on "(-infty,0)):}#,

Hence,

#f# is #{("increasing on "[0,infty)),("decreasing on "(-infty,0]):}#

By First Derivative Test,

#f':(-) to (+)# aound #x=0# #=> f(0)=0# is a local minimum.
(Note: There is no local maximum.)

By Quotient Rule,

#f''(x)=6{1cdot(x^2+3)^2-x cdot2(x^2+3)(2x)}/{(x^2+3)^4}={18(1+x)(1-x)}/{(x^2+3)^3}=0#

#=> x=pm1#

By checking the sample values #x=-2,0,2#,

#{(f''(-2)<0),(f''(0)>0),(f''(2)<0):} => {(f''(x)<0" on "(-infty,-1)),(f''(x)>0" on "(-1,1)),(f''(x)<0" on "(1,infty)):}#

Hence,

#f# is #{("concave upward on "(-1,1)),("concave downward on "(-infty,-1)cup(1,infty)):}#

Since the concavity changes at #x=pm1#, the #x#-ccordinates of the inflection points are #x=pm1#.


I hope that this was helpful.