How do I differentiate #y= sec^2(x) + tan^2(x)#?

1 Answer
Mar 11, 2015

Use the chain rule (generalized power rule) and the derivatives of the trigonometric functions. Beyond that, there are choices you can make

Choice 1:
It may help to re-write it as:
#y=(secx)^2+(tanx)^2#. So

#(dy)/(dx)=2(secx)*d/(dx)(secx) + 2(tanx)*d/(dx)(tan x)# Thus<

#(dy)/(dx)=2secx*secxtanx+2tanx*sec^2x#

#(dy)/(dx)=4sec^2xtanx#.

Which, since #sec^2x=tan^2x+1#, could also be written

#(dy)/(dx)=4tan^3x+4tanx#

Choice 2:
Use the trigonometric identity to re-write the function using #tanx#:
#y=sec^2x+tan^2x=(tan^2x+1)+tan^2x=2tan^2x+1#

So,
#(dy)/(dx)=4tanxd/(dx)(tanx)=4tanxsec^2x#

Choice 3:
Use the trigonometric identity just mentioned to re-write the function using #secx#:

#y=sec^2x+tan^2x=sec^2x+sec^2x-1=2sec^x-1#
So,
#(dy)/(dx)=4secxd/(dx)(secx)=4secxsecxtanx=4sec^2xtanx#