#P(a,b) = (a!)/((a-b)!)#
where #a! = a xx (a-1) xx(a-2)xx(a-3)xx ....xx3 xx 2 1#
and #(a-b)! = (a-b) xx (a-b-1) xx (a-b-2)xx .... xx 2 xx1#
So
#P(n,r) =(n!)/((n-r)!)#
and
#P(n-1,r-1) = ((n-1)!)/(((n-1)-(r-1))!) = ((n-1)!)/((n-r)!)#
so
#n*P(n-1,r-1)#
#= ((n)(n-1)!)/((n-r)!)#
#= (n xx (n-1) xx (n-2) xx ....xx2 xx1)/((n-r)!)#
#= (n!)/((n-r)!)#
#=P(n,r)#