How do you simplify #((9 x 10^9) x (1.65 x 10^-8) x (5.1 x 10^-8)) / (.555)^2#?

1 Answer
Apr 6, 2015

You multiply the numbers, then you add the #10#-powers:

We first work out the part above the division bar:
#(9*10^9)(1.65*10^-8)(5.1*10^-8)=#
#(9*1.65*5.1)(10^9*10^-8*10^-8)=#
#76.58*10^(9-8-8)=76.58*10^-6#

The numerator:
#.555^2=0.308#

And then:
#(76.58//0.308)*10^-6=249*10^-6=#

Move decimal point two to the left, so power goes up (means less negative):

Answer : #2.49*10^-4#