How do you write #25y^2 + 9x^2 - 50y - 54x = 119# in standard form?
1 Answer
May 3, 2015
Consider the tow sub-expressions from the left side of this equation:
-
Terms involving
#color(red)(y)#
#color(red)(25y^2-50y)#
#color(red)(= 25(y^2-2y))#
#color(red)(=25(y^2-2y+1) -25)#
#color(red)(=5^2(y-1)^2 -25)# -
Terms involving
#color(blue)(x)#
#color(blue)(9x^2-54x)#
#color(blue)(=9(x^2-6x+(-3)^2) -81)#
#color(blue)(=3^2(x-3)^2 -81)#
or
or
some variant of this depending upon your local definition of "standard form" for an ellipse.