How do you write #25y^2 + 9x^2 - 50y - 54x = 119# in standard form?

1 Answer
May 3, 2015

#25y^2+9x^2-50y-54x = 119#

Consider the tow sub-expressions from the left side of this equation:

  1. Terms involving #color(red)(y)#
    #color(red)(25y^2-50y)#
    #color(red)(= 25(y^2-2y))#
    #color(red)(=25(y^2-2y+1) -25)#
    #color(red)(=5^2(y-1)^2 -25)#

  2. Terms involving #color(blue)(x)#
    #color(blue)(9x^2-54x)#
    #color(blue)(=9(x^2-6x+(-3)^2) -81)#
    #color(blue)(=3^2(x-3)^2 -81)#

#25y^2+9x^2-50y-54x = 119#
#25y^2-50y +9x^2-54x = 119#
#=color(red)(5^2(y-1)^2 -25) + color(blue)(3^2(x-3)^2-81) = 119#
#=5^2(y-1)^2+3^2(x-3)^2 = 225#
or
#=(25y-25)^2+(9x-27)^2= 15^2#
or
some variant of this depending upon your local definition of "standard form" for an ellipse.