How do you find the derivative of #(1-secx)/tanx#?

1 Answer
May 15, 2015

We could use the quotient rule and differentiate the function from this form, but it may be simpler to rewrite the function first:

#f(x)=(1-secx)/tanx = 1/tanx -secx/tanx#

#color(white)"ssss"# #= cotx -secxcotx#

#color(white)"ssss"# #= cotx - cscx#

Now it is a matter on knowing these derivatives (memorize them):

#f'(x)=-csc^2x-(-cscxcotx)=cscxcotx-csc^2x#

Or, if you prefer:

#f'(x) = cscx(cotx-cscx)#