How do you find the derivative of x^2*e^-x?

1 Answer
May 31, 2015

(uv)' = u'v+uv'

u = x^2
u' = 2x

v = e^(-x)
We know that (e^(ax))' = (ax)'*e^(ax) .
ax = -x
(-x)' = -1
v' = -e^(-x)

Therefore :

(uv)' = 2x ( e^(-x)) + x^2(-e^(-x))

(uv)' = ( 2x-x^2) (e^(-x))

(uv)' = (2-x) xe^(-x).