What is the derivative of #sin(arc cosx)#?

1 Answer
Jun 12, 2015

#-x/sqrt(1-x^2)#

Explanation:

#y=sin(arccosx)#

Method 1
(Use if you don't remember the derivative of #arccosx#., but remember your trigonometry.)

#sin(arccosx)# is the sine of a number (an angle) in #[0, pi]# whose cosine is #x#.
In #[0, pi]# the sine is positive, so: #sin(arccosx) = sqrt(1-x^2)#

Now #y=sin(arccosx) = sqrt(1-x^2)#, so

#y' = 1/(2sqrt(1-x^2)) (-2x) = -x/sqrt(1-x^2)#

Method 2:
(Use if you remember the derivative of #arccosx#.)
Use the chain rule. (And the fact that #cos(arccosx)=x#)

#y'=cos(arccosx) * d/dx(arccosx)#

#= x* (-1/sqrt(1-x^2)) = -x/sqrt(1-x^2)#