How do you simplify #n^5/(n-6) * (n^2-6n)/(n^8)#? Algebra Rational Equations and Functions Multiplication of Rational Expressions 1 Answer Adrian D. Jul 23, 2015 #1/n^2# Explanation: Note that: #n^5/(n-6)*(n^2-6n)/n^8=n^6/(n-6)(n-6)/n^8# Cancel similar terms and we have: #n^6/(n-6)(n-6)/n^8=1/n^2# Answer link Related questions What is Multiplication of Rational Expressions? How do you multiplying rational expressions? Is multiplication of rational expressions commutative? How do you multiply #\frac{12x^2-x-6}{x^2-1} \cdot \frac{x^2+7x+6}{4x^2-27x+18}#? How do you multiply and simplify to the lowest terms #\frac{x^3}{2y^3} \cdot \frac{2y^2}{x}#? How do you multiply #\frac{5x^2+16x+3}{36x^2-25} \cdot (6x^2+5x)#? How do you multiply and simplify the expression #2xy \cdot \frac{2y^2}{x^3}#? How do you multiply #(a^2-a-12)/(a^2-5a+4)*(a^2+2a-3)/(a^2+a-6)#? How do you multiply #(4(x+2))/(5x)*(6x^2)/(2x)#? How do you multiply #(30a^2)/(18b)*(6b)/(5a)#? See all questions in Multiplication of Rational Expressions Impact of this question 2688 views around the world You can reuse this answer Creative Commons License