How do I simplify #(10*2^6)/(8*2^(-2))#?

1 Answer
Jul 26, 2015

I found: #320#

Explanation:

You can write it as:
#=10/8*2^6*2^2=# remembering that #1/a^2=a^-2#
then:
#=cancel(10)^5/cancel(8)^4*2^(6+2)=# remembering tha #a^b*a^c=a^(b+c)#
#=5/4*2^8=#
#=5/cancel(4)*cancel(256)^(64)=#
#=5*64=320#