If #y = a^(1/{1-log_a x})# #Z = a^(1/{1-log_a y})# prove that #x = a^(1/{1-log_a z})# ?

2 Answers
Aug 27, 2015

Have a look:

Explanation:

Let us take #log_a# of the first to get:
#log_ay=1/(1-log_ax)#
And also of the second:
#log_az=1/(1-log_ay)#
Substitute the first into the second:
#log_az=1/(1-1/(1-log_ax))#
Rearrange:
#log_az=1/((cancel(1)-log_axcancel(-1))/(1-log_ax))# change sign on the right and rearrange again:
#log_azlog_ax=log_ax-1#
#log_azlog_ax-log_ax=-1#
Collect #log_ax#:
#log_ax[log_az-1]=-1#
Change sign and isolate #log_ax#:
#log_ax=1/(1-log_az)#
Take the power of #a# on both sides:
#x=a^(1/(1-log_az))#

Aug 27, 2015

Require theory:
# log_c b^n = n log_c b #
# log_c c = 1 #

From question:
# y = a^(1/(1-log_a x)) # ... (Eq 1)
# z = a^(1/(1-log_a y)) # ...(Eq 2)

Take log on both sides of equation 2:
# log_a z = 1/(1-log_a y) #
# 1 - log_a y = 1/log_a z #

Substitute expression for #y#:
# 1 - 1/(1-log_a x) = 1/log_a z #
# log_a z/(log_a z - 1) = 1-log_a x #
# log_a x = 1 - log_a z/(log_a z - 1) = -1/(log_a z - 1) #
# x = a^(1/(1-log_a z)) #