How do you take the derivative of #y=tan^2(2x)#?

1 Answer
Aug 28, 2015

Use the power rule, the derivative of tangent and the chain rule (twice).

Explanation:

#y=tan^2(2x)#

First, remember the convention for trigonometric functions:

#y=tan^2(2x) = (tan(2x))^2#

So the outermost function is the square. Use the power and chain rules to get:

#dy/dx = 2(tan(2x)) * d/dx(tan(2x))#

# = 2tan(2x) * sec^2(2x) * d/dx(2x)#

#= 2tan(2x) * sec^2(2x) * (2)#

# = 4tan(2x)sec^2(2x)#