What is the derivative of #y=xarcsin(x^2)#?
1 Answer
Explanation:
To make the calculations more interesting, I'll assume that you don't know what the derivative of
You can differentiate this function by using implicit differentiation. Start by isolating
#y/x = arcsin(x^2)" "color(blue)((1))#
This is equivalent to
#sin(y/x) = x^2" "color(blue)((2))#
Differentiate both sides with respect to
#d/dx(sin(y/x)) = d/dx(x^2)#
#cos(y/x) * ((dy)/dx * 1/x - y/x^2) = 2x#
Rearrange this to get
#(dy)/dx * cos(y/x) * 1/x - y/x^2 * cos(y/x) = 2x#
#(dy)/dx * cos(y/x) * 1/x = 2x + y/x^2 * cos(y/x)#
#(dy)/dx = (2x + y/x^2 * cos(y/x))/(cos(y/x) * 1/x)#
#(dy)/dx = (2x)/(cos(y/x) * 1/x) + y/x^color(red)(cancel(color(black)(2))) * color(red)(cancel(color(black)(x))) * color(red)(cancel(color(black)(cos(y/x))))/color(red)(cancel(color(black)(cos(y/x))))#
#(dy)/dx = (2x^2)/cos(y/x) * y/x#
Use the trigonometric identity
#color(blue)(sin^2x + cos^2x = 1)#
To write
#cos^2x = 1 - sin^2x#
#sqrt(cos^2x) = sqrt(1-sin^2x)#
#cosx = sqrt(1 - sin^2x)#
Use this identity and equations
#(dy)/dx = (2x^2)/sqrt(1-sin^2(y/x)) + arcsin(x^2)#
#(dy)/dx = (2x^2)/sqrt(1 - (x^2)^2) + arcsin(x^2)#
#(dy)/dx = color(green)((2x^2)/sqrt(1-x^4) + arcsin(x^2))#