How do you find the integral of int (lnx / sqrt(x)) dx from 0 to 1?

2 Answers
Sep 15, 2015

I found: -4

Explanation:

Let us try by changing 1/sqrt(x)==x^(-1/2) and then Integrate By Parts:
int(ln(x)/sqrt(x))dx==int(x^(-1/2)ln(x))dx=
=2x^(1/2)ln(x)-int(2x^(1/2)*1/xdx)=
=2x^(1/2)ln(x)-int(2x^(1/2-1)dx)=
=2x^(1/2)ln(x)-int(2x^(-1/2)dx)=
=2x^(1/2)ln(x)-4x^(1/2)=
let us use our extrema:
=2x^(1/2)ln(x)-4x^(1/2)|_0^1=-4

Only problematic part is 2x^(1/2)lnx when x->0_+, so we will find the limit:

lim_(x->0_+)2x^(1/2)lnx= 0*(-oo) which is undefined.

Using the rule of L'Hospital:

lim_(x->0_+)2x^(1/2)lnx=2lim_(x->0_+)lnx/x^(-1/2)=

=2lim_(x->0_+)(1/x)/(-1/2x^(-3/2))=-4lim_(x->0_+)x^(3/2)/x=

=-4lim_(x->0_+)sqrtx=-4*0=0

So, the above results holds.

Sep 16, 2015

i got -4 by changing variabe method

Explanation:

let the x = t^2
then x^(1/2) = t
dx = 2tdt
limits:
if x= 0 then t= 0
if x= 1 then t=1
applying integration
int_0^1 lnt^2/t( 2tdt)
=int_0^14lntdt
=4int_0^1lntdt
applying by parts
4lnt*int_0^1dt-int_0^1t*(1/t)dt
=4[ln1 1- 0 ln0-{1-0}]
=4[0-1]
=-4