What is the limit of #1/sqrt(x^2 + 1)-x # as x goes to infinity?

1 Answer
Sep 16, 2015

#lim_(xrarroo) 1/sqrt(x^2 + 1)-x = -oo# and
#lim_(xrarroo) 1/(sqrt(x^2 + 1)-x) = oo#

Explanation:

I'm not sure the question is typed correctly, so I'll give solutions to both possibilities.

#lim_(xrarroo) 1/sqrt(x^2 + 1)-x = lim_(xrarroo) 1/sqrt(x^2 + 1)-lim_(xrarroo)x#

# = 0- lim_(xrarroo) x = -oo#

And

#lim_(xrarroo) 1/(sqrt(x^2 + 1)-x) = lim_(xrarroo) 1/((sqrt(x^2 + 1)-x)) ((sqrt(x^2 + 1)+x))/((sqrt(x^2 + 1)+x))#

# = lim_(xrarroo) (sqrt(x^2 + 1)+x)/(x^2+1-x^2)#

# = lim_(xrarroo) (sqrt(x^2 + 1)+x)#

#= lim_(xrarroo) sqrt(x^2 + 1)+ lim_(xrarroo)x#

# = oo+oo=oo#