Let's ignore the integral symbols for now.
#=> sin(5x)sin(8x)#
It'd be great if we had an identity for this. Maybe we do!
#sinusinv = ?#
Recall that an addition/subtraction identity with #cos(upmv)# contains #sinusinv#.
#cos(u - v) = cosucosv + sinusinv#
#cos(u + v) = cosucosv - sinusinv#
We can acquire #2sinusinv# from this by subtracting the two equations (and thus subtracting #-sinusinv# from #sinusinv#):
#cos(u - v) - cos(u + v)#
#= [cosucosv + sinusinv] - [cosucosv - sinusinv]#
#= 2sinusinv#
Therefore:
#color(green)(sinusinv = (cos(u-v) - cos(u + v))/2)#
Applying this identity, we get:
#= [cos(5x - 8x) - cos(5x + 8x)]/2#
#= [cos(-3x) - cos(13x)]/2#
but #cos(3x) = cos(-3x)#, thus:
#= [cos(3x) - cos(13x)]/2#
This is much easier to do! Bringing back the integral symbols:
#= 1/2int cos(3x)dx - 1/2int cos(13x)dx#
#= 1/2*1/3sin(3x) - 1/2*1/13sin(13x)#
#= color(blue)(1/6sin(3x) - 1/26sin(13x) + C)#