How to evaluate the integral using integration by parts with the indicated choices of u and dv. #int (lny)/sqrt(y) dy# ?

1 Answer

Refer to explanation

Explanation:

Using integration by parts we have

#int lny/sqrtydy=int 2*lny*(sqrty)'dy=2lny*sqrty-2int sqrty*(lny)'dy= 2lnysqrty-2int sqrty*(1/y)dy=2lnysqrty-2int(1/sqrty)=2lnysqrty-4*int (sqrty)'dy=2lnysqrty-4sqrty=2sqrty(lny-2)#

Hence finally we get

#int lny/sqrtydy=2sqrty*(lny-2)#

Remarks
1. For two functions f(x),g(x) integration by parts is

#int f(x)*(g(x))'dx=f(x)*g(x)-int g(x) * (f(x))' dx #

  1. The phrase #()'# donates first derivative