How do you find the integral of #int (t^2)*sin 3t dt# from negative infinity to infinity?

1 Answer
Sep 26, 2015

#int_(-oo)^(oo) t^2 sin 3t dt# does not converge,

despite being the integral of an odd function.

Explanation:

#d/dt (-1/3t^2 cos 3t) = t^2 sin 3t - 2/3 t cos 3t#

#d/dt (2/9 t sin 3t) = 2/3 t cos 3t + 2/9 sin 3t#

#d/dt (2/27 cos 3t) = -2/9 sin 3t#

So

#int t^2 sin 3t dt = -1/3 t^2 cos 3t + 2/9 t sin 3t + 2/27 cos 3t + C#

Hence:

#int_0^x t^2 sin 3t dt = -1/3 x^2 cos 3x + 2/9 x sin 3x + 2/27 cos 3x - 2/27#

In particular:

#int_0^(2n pi)t^2 sin 3t dt = -1/3(2n pi)^2 -> -oo# as #n -> oo#

Also

#int_(-2n pi)^0 t^2 sin 3t dt = 1/3(2n pi)^2 -> oo# as #n -> oo#

So #int_(-oo)^(oo) t^2 sin 3t dt# does not converge.