Is #sum_(n=0)^oo (1-1/n)^n# convergent or divergent ?
2 Answers
Explanation:
First note that
We can see this using the binomial theorem (though I'm not sure this is rigorous)...
#(1+x/n)^n = ((n),(0)) + ((n),(1))x/n + ((n),(2))x^2/(n^2) + ...#
#=1 + n/n x/(1!) + (n(n-1))/(n^2) x^2/(2!) + (n(n-1)(n-2))/(n^3) x^3/(3!) +...#
#=1 + x/(1!) + (n^2+O(n))/(n^2) x^2/(2!) + (n^3+O(n^2))/(n^3) x^3/(3!) +...#
#=1 + x/(1!) + (1+(O(n))/(n^2)) x^2/(2!) + (1+(O(n^2))/(n^3)) x^3/(3!) +...#
#-> sum_(k=0)^oo x^k/(k!)# as#n->oo#
So
So
If
So
The series is divergent.
Explanation:
Apply the divergence test which says that if