How do you write #(x+1)/(1 - x)^2# in a power series representation?
1 Answer
First, notice how we can rewrite this as:
#x/(1-x)^2 + 1/(1-x)^2#
If you recall, you should have been taught that:
#1/(1-x) = sum_(n=0)^N x^n = 1 + x + x^2 + x^3 + ...#
Notice how then you can take the derivative (remember the chain rule with
#d/(dx)[1/(1-x)] = color(highlight)(d/(dx)[sum_(n=0)^N x^n] = 1/(1-x)^2)#
#= color(highlight)(1 + 2x + 3x^2 + 4x^3 + 5x^4 + ...)#
That gives you the second half of the answer. Now, here is something rather interesting we can do. We can multiply by the whole series by
#color(darkblue)(x/(1-x)^2) = x * 1/(1-x)^2 = color(darkblue)(x*d/(dx)[sum_(n=0)^N x^n])#
Therefore, we can modify
NOTE:
#color(darkblue)(x/(1-x)^2) = x*[0 + 1 + 2x + 3x^2 + 4x^3 + ...]#
#= color(darkblue)(x + 2x^2 + 3x^3 + 4x^4 + ...)#
Finally, we can add on the series for
#= color(darkblue)([" "" "x + 2x^2 + 3x^3 + 4x^4 + ...]) + color(highlight)([1 + 2x + 3x^2 + 4x^3 + 5x^4 + ...])#
#= color(blue)(1 + 3x + 5x^2 + 7x^3 + 9x^4 + ...)#
#= color(blue)(sum_(n=0)^N (2n+1)x^n)#