How do you find the indefinite integral of #int sin2xcos2xdx #?

1 Answer
Oct 20, 2015

Here are three solutions.

Explanation:

Substitution 1

#int sin2xcos2xdx #

Let #u = sin2x#, so that #du = 2cos2x dx#and the integral becomes

#1/2intudu = 1/4u^2 +C#

#int sin2xcos2xdx = 1/4sin^2 2x +C #

Substitution 2

#int sin2xcos2xdx #

Let #u = cos2x#, so that #du = -2sin2x dx#and the integral becomes

#-1/2intudu = -1/4u^2 +C#

#int sin2xcos2xdx = -1/4cos^2 2x +C #

Solution 3

#int sin2xcos2xdx = int 1/2sin4x dx#

Let #u = 4x#, so #du = 4dx# and the integral becomes

#1/8 int sinu du = -1/8 cos u +C#

#int sin2xcos2xdx = -1/8cos4x +C#

The challenge is to see why these answers are the same.

Hint find the difference between the answers.
Hint 2 "difference" means subtract.