Let #f(x) = x^2# and how do you compute the Riemann sum of f over the interval [6,8], using the following number of subintervals (n=5) and using the right endpoints?

1 Answer
Oct 24, 2015

See the explanation section, below.

Explanation:

#f(x) = x^2#

#[a,b] = [6,8]#

and #n=5#.

Find #Delta x = (b-a)/n = 2/5# (or # = 0.4# if you prefer decimals).

Find the intervals.

Start at #a# and successively add #Delta x# until you get to #b#.

#[6,6 2/5], [6 2/5, 6 4/5], [6 4/5, 7 1/5], [7 1/5, 7 3/5], [7 3/5, 8]#

(or #[6,6.4], [6.4, 6.8], [6.8, 7.2], [7.2, 7.6], [7.6, 8]# using decimals)

The right endpoints are: #x_1=6 2/5, x_2=6 4/5, x_3=7 1/5, x_4=7 3/5, x_5=8#

(or #x_1=6.4, x_2=6.8, x_3=7.2, x_4=7.6, x_5=8# using decimals)

Now use the right Riemann sum for #n=5#

#R_5 = f(x_1)Deltax + f(x_2)Deltax + f(x_3)Deltax + f(x_4)Deltax + f(x_5)Deltax"#

Now, do the arithmetic.